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This paper provides a study of optimal economic growth under discounting in discrete
time in a two-sector version of the Robinson–Solow–Srinivasan model. It examines how
dynamic optimal behavior changes in response to increasing impatience. The optimal
policy function is a pan map for high discount factors and a check map for low discount
factors. It is shown that the transformation from the pan map to the check map, for the
intermediate range of discount factors, can be quite intricate. This is demonstrated by
proving the existence of two bifurcation values of the discount factor in the borderline
case of themodel, which establishes the possibility of reswitching of optimal actions as the
discount factor varies.
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1. Introduction

How is dynamic optimal behavior of an agent affected when the agent becomes more impatient? The question is central
to the study of dynamic optimizationmodels in economics. It is also surprisingly hard to answer. The question belongs to the
study of comparative dynamics and is best addressed by the methods of bifurcation analysis, a branch of the mathematical
theory of dynamical systems. However, in themathematical theory, the dynamical system is given by a parametrized family
of maps, and forms the primitive concept on which the theory is based. In dynamic optimization models of economics, on
the other hand, this parametrized family of maps is a derived concept, obtained by solving an infinite-horizon dynamic
optimization problem, for each specification of the parameter(s). It is, in fact, what is called a parameter-dependent optimal
policy correspondence (OPC). Thus, in order to address the fundamental question posed above, one needs to conduct
bifurcation analysis of dynamic optimization models in economics with respect to the discount factor, and in order to do
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this, one needs to obtain an explicit solution of the optimal policy correspondence for each specification of the discount
factor.

Let us elaborate further onwhat all thismeans. Given a dynamic optimizationmodel,1 specified by a transition possibility
set and a reduced-form utility function, (Ω, u), one needs to explicitly solve for the optimal policy correspondence for every
value of the discount factor, ρ ∈ (0, 1). There are very few dynamic optimization models for which there are explicit
solutions of the optimal policy correspondence. The standard aggregative growth model with a log welfare function on
consumption and a Cobb–Douglas production function leads to linear optimal policy functions for the entire range of
discount factors. The best known instance of an explicit solution of a nonlinear optimal policy function is the Weitzman
example, reported in [3], and discussed extensively by McKenzie [4], Benhabib–Nishimura [5] and Mitra–Nishimura [6].
Neither example has the rich structure to allow for the full spectrum of dynamic optimal behavior ranging from convergence
to a steady state to persistent cycles and chaos, as the discount factor changes.

In this paper, we deal with a dynamic optimization framework which is a two-sector version of a model due to [7–9],
henceforth referred to as the RSS model.2 Using the method of dynamic programming, we are able to provide an explicit
solution of the optimal policy correspondence for the full range of ‘‘high’’ and ‘‘low’’ discount factors. For the high range, the
optimal policy correspondence turns out to be a nonlinear optimal policy function, whichwe call the ‘‘panmap’’; for the low
range, it turns out to be a nonlinear optimal policy function, which we call the ‘‘check map’’; each map is invariant for its
range of discount factors. Ours is one of the few examples of an explicit solution of the optimal policy correspondencewhich
has the potential to exhibit the full range of dynamic optimal behavior (ranging from simple dynamics like convergence to
a steady state or to a period-two cycle to complicated dynamics involving topological and ergodic chaos, as the parameters
of the model change), because the optimal policy correspondence, for significant ranges of the discount factor, turns out to
be a non-monotonic and a nonlinear optimal policy function (OPF).

Our bifurcation analysis of optimal behavior with respect to changes in the discount factor may be seen as a continuation
of the line of research reported in [15,16,6]. The fact thatwepresent an explicit solution of the optimal policy correspondence
makes our results sharper, albeit in the context of a more specific two-sector model. Explicit solutions of nonlinear optimal
policy functions (such as the tent map) have been obtained, given a discount factor, by choosing the transition possibility
set and the utility function appropriately (dependent on the given discount factor). Such constructs, though useful in
understanding other issues, are ill-suited to conducting bifurcation analysis with respect to the discount factor, given the
transition possibility set and the utility function.3

Our choice of this highly simplified two-sectormodel is dictated considerably by the fact that it is tractable for the purpose
for which it is being used. The technology in this two-sector model is specified by a pair of parameters (a, d), where a is the
labor per unit of capital production in the investment good sector, and d the depreciation rate of capital. Investment is
assumed to be irreversible. A consumption good is produced in the other sector, with one unit of capital and one unit of
capital needed per unit of consumption good production. Welfare is derived solely from consumption of this good, and
is linear in its argument. The objective is to maximize the present value of welfare levels attained over time, where future
welfare levels are discountedusing a discount factorρ ∈ (0, 1). This is a full description of themodel,which canbe translated
to the standard form of (Ω, u, ρ). For the rest of the discussion, we treat (Ω, u) as given and fixed. The parameter which we
focus on (for our bifurcation analysis) is the discount factor, ρ,which varies from one infinite-horizon dynamic optimization
problem to another.

Our choice of model provides rich dividends. Without placing further restrictions on the parameters (that is, without
postulating particular relationships between the fixed parameters (a, d) and the variable parameter of interest, ρ, we are
able to specify in considerable detail the nature of the optimal policy correspondence (OPC) for all discount factors. This is
summarized in Proposition 2 below and, visually, in Fig. 1.4 It shows that the OPC is actually an OPF for both low and high
ranges of the initial stock, where these are respectively given by the intervals A = [0, x̂] and C = [k, ∞). Fig. 1 also shows
that in the middle range of initial stocks, the interval B = (D ∪ E), optimal actions must lie in the triangular region GG1M
which is easy to specify in terms of the fixed parameters (a, d). Thus, we have a convenient template in terms of which
further investigation of the effect of changes in the discount factor on optimal behavior can be conducted.

The result discussed above facilitates our analysis considerably in two ways. First, it is clear that further investigation
can focus entirely on the middle range of initial stocks. Second, since we know exactly the optimal policy function in the
high and low ranges of initial stocks, the initial stocks in these ranges that lead to optimal actions in the middle range will
provide precise information on the initial stocks in the middle range via the functional equation of dynamic programming.

Pursuing this line of analysis in [14], we were able to provide an explicit solution of the optimal policy correspondence
as an optimal policy function, which we call the ‘‘pan map’’ (the function VGG1D in Fig. 1, described analytically by g in (10)

1 For a general overview of the subject, see [23], and the earlier texts by Majumdar et al. [1] and Carlson et al. [2], bearing in mind that the last is in
continuous time.
2 The interest in the full-fledged multisectoral version of this model, and its generalizations, is derived from studying the problem of optimal choice of

techniques in development planning; see [10] who provides a continuous-time analysis under discounting, and [11], who provide a discrete-time analysis
in the undiscounted case. For recent work on the two-sector version of the model, see [12–14] and their references.
3 For a full discussion of this point, and for the relevant literature, the reader is referred to [6].
4 We shall return to Fig. 1 in the exposition below, and the reader can disregard at this stage the legends summarizing various values of the discount

factor ρ in terms of the parameters of the model.
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Fig. 1. Optimal policy correspondence for ρξ = 1: the pan map, the check map and everything in between.

of Section 2.4), for all discount factors ρ above a threshold discount factor, (1/ξ), where ξ ≡ (1/a)− (1− d) represents the
rate of transformation betweenmachines today andmachines tomorrow, while maintaining full-employment of both labor
and capital. It turns out that (1/ξ) is in fact a bifurcation value for the discount factor, because once the discount factor falls
below it, we can show that the pan map is not optimal. [For ease of reference, this result is restated here as Theorem 1.]

The result stated above does not specify the nature of the optimal policy correspondence when the discount factor falls
below the threshold level of (1/ξ). Commenting on this aspect of the above result, we conjectured two possible scenarios.5
The first scenario is that for ρ < (1/ξ), the optimal policy correspondence is an optimal policy function, which we call the
‘‘checkmap’’ (the function VGMG1D in Fig. 1, described analytically by H in (CM) of Section 3.1). The second scenario is more
intricate. It might be the case that for some values of the discount factor lower than (1/ξ), only a subset of the transitions (in
the middle section), described by the correspondence G in Proposition 2, are optimal, and ‘‘there is a cascade of bifurcation
values’’ of the discount factor before one reaches the discount factor at which the check map is optimal. This paper may be
viewed as an exploration of this conjecture.

Under the technological restriction ξ(1 − d) ≤ 1, the first scenario does indeed occur: for all ρ < (1/ξ), the check map
is optimal. [This was shown in [13], and is restated here as Proposition 3.] However, under this technological restriction
(generically), the RSS model can generate only simple optimal dynamics: there is a stable period-two cycle, and optimal
programs from (almost) every initial stock converge to this period-two cycle.6

The second scenario has two aspects. First, there is the assertion that when the discount factor is ‘‘well below’’ the
bifurcation value (1/ξ), the checkmap is always optimal. Second, there is the conjecture that for some discount factor below
the bifurcation value (1/ξ), the check map is not optimal.

The first aspect is relatively straightforward. We show (in Proposition 4) that for all discount factors below the discount
factor (1/ζ ), where ζ = (1/a), the optimal policy correspondence is the check map.

The second aspect is considerably more difficult, and a major part of this paper is devoted to analyzing it. It appears to
us that the analysis would have to rely on our separating two cases, one where ξ is relatively low (the ‘‘inside case’’) and
the other where it is relatively high (the ‘‘outside case’’). We can describe the distinction more precisely as follows.7 Let the
parameters a ∈ (0, 1) and d ∈ (0, 1) be such that the check map takes the unit capital stock to the stock k ≡ x̂/(1 − d) in

5 See the concluding section of [14].
6 See, for example, [17] for a discussion of this point.
7 For a geometric depiction of this categorization, and for a complete analysis of specific instances of the two-sector RSS model within this tripartite

categorization, see [18].
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two periods; that is, H2(1) = k. This is referred to as the ‘‘borderline case’’; it forms the borderline between the inside case
(H2(1) < k) and the outside case (H2(1) > k).

We approach the second aspect8 by noting that under the technological restriction H2(1) ≤ k (which is weaker than the
technological restriction ξ(1− d) ≤ 1, discussed above) the check map can be shown to be uniquely optimal if the discount
factor ρ is less than (1/η), where η =

√
ξ/a. [See Proposition 5 in Section 4.2.] This threshold value of the discount factor

(1/η) is larger than (1/ζ ) and smaller than (1/ξ). Thus, this result improves on Proposition 4, albeit under the technological
restriction H2(1) ≤ k. But more important for an understanding of the second scenario, the proof of the result suggests that
when (1/ξ) > ρ > (1/η), the check map might not be optimal (unlike in Proposition 3, where the strong technological
restriction ξ(1−d) ≤ 1 was used). This is explicitly confirmed in Theorem 2, where the technological restriction H2(1) = k
is imposed. To summarize, in the ‘‘borderline case’’, we have the situation that (i) for ρ < (1/η), the check map is uniquely
optimal, and (ii) for (1/ξ) > ρ > (1/η), the check map is not optimal. Thus, we have the striking result that for the
borderline case, there is a second bifurcation value of the discount factor, confirming the conjecture of the second scenario.

Theorem 2 also shows that when ρ = (1/ξ), the check map and the pan map are both optimal (and so is everything in
between), and this establishes the possibility of a ‘‘reswitching phenomenon’’. This means that an action that is optimal at
the discount factor (1/ξ) can become non-optimal as the discount factor falls to levels in the interval ((1/η), (1/ξ)), and
again be optimal as the discount factor falls to yet lower levels in the interval (0, (1/η)).

In the range of discount factors (1/ξ) > ρ > (1/η), neither the check map nor the pan map is optimal in the borderline
case. Section 5 is devoted to understanding the nature of the OPC in this situation. It is shown (in Theorem 3) that a flat
bottom map (with a narrower bottom than the pan map) is optimal. We note that this flat bottom map is a selection from
the optimal policy correspondence (so there is no claim that it is an optimal policy function), and it can vary as the discount
factor, ρ, varies in this range. We show (in Proposition 7) that the flat bottom map never gets close to the pan map as ρ
varies in this range and it may be speculated that it gradually gets close to the check map as ρ approaches (1/η). It is then
natural to ask how the flat bottom maps get transformed into the check map as the discount factor, while satisfying the
constraints (1/ξ) > ρ > (1/η), approaches (1/η), the second bifurcation value of the discount factor. In our final result
(Proposition 9) we establish the ‘‘asymptotic property’’ that the optimal policy correspondence converges to the check map
as the discount factor, ρ, converges to (1/η).

The outline of the paper is straightforward. Section 2 presents the preliminaries of the two-sector RSS model. Section 3
provides four lemmas which form our principal tools for characterizing optimality; self-contained proofs of these results
are provided in an Appendix. Section 4 presents our main results on bifurcation analysis with respect to the discount factor.
Section 5 is devoted exclusively to a more detailed analysis of the optimal policy correspondence in the borderline case.

2. Preliminaries

2.1. The two-sector version of the RSS model

A single consumption good is produced by infinitely divisible labor and machines with the further Leontief specification
that a unit of labor and a unit of a machine produce a unit of the consumption good. In the investment-goods sector, only
labor is required to produce machines, with a > 0 units of labor producing a single machine. Machines depreciate at the
rate 0 < d < 1. A constant amount of labor, normalized to unity, is available in each time period t ∈ N, where N is the set
of non-negative integers. Thus, in the canonical formulation surveyed in [19], the collection of production plans (x, x′), the
amount x′ of machines in the next period (tomorrow) from the amount x available in the current period (today), is given by
the transition possibility set:

Ω = {(x, x′) ∈ R2
+

: x′
− (1 − d)x ≥ 0, and a(x′

− (1 − d)x) ≤ 1}

where z ≡ (x′
− (1 − d)x) is the number of machines that are produced, and z ≥ 0 and az ≤ 1 respectively

formalize constraints on reversibility of investment and the use of labor. AssociatedwithΩ is the transition correspondence,
Γ : R+ → R+, given byΓ (x) = {x′

∈ R+ : (x, x′) ∈ Ω}. For any (x, x′) ∈ Ω , one can consider the amount y of themachines
available for the production of the consumption good, leading to a correspondence Λ : Ω −→ R+ with

Λ(x, x′) = {y ∈ R+ : 0 ≤ y ≤ x and y ≤ 1 − a(x′
− (1 − d)x)}.

Welfare is derived only from the consumption good and is represented by a linear function, normalized so that y units of
the consumption good yields awelfare level y. A reduced-formutility function,u : Ω → R+ withu(x, x′) = max{y ∈ Λ(x, x′)}
indicates the maximum welfare level that can be obtained today, if one starts with x of machines today, and ends up with
x′ of machines tomorrow, where (x, x′) ∈ Ω . Intertemporal preferences are represented by the present value of the stream
of welfare levels, using a discount factor ρ ∈ (0, 1).

An economy E consists of a triple (a, d, ρ), and the following concepts apply to it. A program from xo is a sequence
{x(t), y(t)} such that x(0) = xo, and for all t ∈ N, (x(t), x(t + 1)) ∈ Ω and y(t) = maxΛ(x(t), x(t + 1)). A program

8 For the motivation for this approach, see the discussion in Section 4.2.
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{x(t), y(t)} is simply a program from x(0), and associated with it is a gross investment sequence {z(t + 1)}, defined by
z(t + 1) = (x(t + 1) − (1 − d)x(t)) for all t ∈ N. It is easy to check that every program {x(t), y(t)} is bounded by
max{x(0), 1/ad} ≡ M(x(0)), and in particular every program {x(t), y(t)} from x ∈ Z ≡ [0, (1/ad)] is bounded by (1/ad).

For every program {x(t), y(t)}, we have
∑

∞

t=0 ρtu(x(t), x(t + 1)) < ∞. A program {x̄(t), ȳ(t)} from xo is called
optimal if:

∞−
t=0

ρtu(x(t), x(t + 1)) ≤

∞−
t=0

ρtu(x̄(t), x̄(t + 1))

for every program {x(t), y(t)} from xo. A program {x(t), y(t)} is called stationary if for all t ∈ N, we have (x(t), y(t)) =

(x(t + 1), y(t + 1)). A stationary optimal program is a program that is stationary and optimal; in this case, the stationary
level of x(t) is called a stationary optimal stock.

The parameter, ξ = (1/a) − (1 − d), which figures prominently in our analysis, represents the rate of transformation
between machines today and machines tomorrow, while maintaining full-employment of both labor and capital. Without
further explicit mention, it will be assumed in what follows that ξ > 1. We denote (1/a) by ζ .

2.2. The modified golden rule

A modified golden rule is a pair (x̂, p̂) ∈ R2
+
such that (x̂, x̂) ∈ Ω and:

u(x̂, x̂) + (ρ − 1)p̂x̂ ≥ u(x, x′) + p̂(ρx′
− x) for all (x, x′) ∈ Ω.

Our first proposition establishes the existence of a modified golden rule. A distinctive feature of the RSS model with
discounting is that we can describe the modified golden-rule stock explicitly in terms of the parameters of the model.9

Proposition 1. There is (x̂, p̂) = (1/(1 + ad), 1/(1 + ρξ)) such that (x̂, x̂) ∈ Ω, and

u(x̂, x̂) + (ρ − 1)p̂x̂ ≥ u(x, x′) + p̂(ρx′
− x) for all (x, x′) ∈ Ω. (MGR)

2.3. The dynamic programming approach

In this subsection, we describe the dynamic programming approach to characterizing optimality.10 Underlying the
approach are (a) a value function, and (b) a policy correspondence. Connecting these two objects of interest is the functional
equation of dynamic programming.

Using standard methods, one can establish that there exists an optimal program from every x ∈ X ≡ [0, ∞). Thus, we
can define a value function, V : X → R by:

V (x) =

∞−
t=0

ρtu(x̄(t), x̄(t + 1)) (1)

where {x̄(t), ȳ(t)} is an optimal program from x. Then, it is straightforward to check that V is concave, non-decreasing and
continuous on X . Further, it can be verified that V is, in fact, increasing on X .

It can be shown that for each x ∈ X , the Bellman equation:

V (x) = max
x′∈Γ (x)

{u(x, x′) + ρV (x′)} (2)

holds. For each x ∈ X , we denote by h(x) the set of x′
∈ Γ (x) which maximize {u(x, x′) + ρV (x′)} among all x′

∈ Γ (x). That
is, for each x ∈ X,

h(x) = arg
[
max
x′∈Γ (x)

{u(x, x′) + ρV (x′)}

]
. (3)

Then, a program {x(t), y(t)} from x ∈ X is an optimal program from x if and only if it satisfies the equation: V (x(t)) =

u(x(t), x(t + 1)) + ρV (x(t + 1)) for t ≥ 0; that is, if and only if x(t + 1) ∈ h(x(t)) for t ≥ 0. We call h the (optimal) policy
correspondence (OPC). If h is a function, we refer to it as the (optimal) policy function (OPF). Standard arguments show that
the OPC is upper hemicontinuous on X; consequently, when h is a function, it is continuous on X .

It is easy to verify, using ρ ∈ (0, 1), that the function V , defined by (1), is the unique continuous function on Z ≡

[0, (1/ad)] which satisfies the functional equation of dynamic programming, given by (2).

9 Propositions 1 and 2 are stated and proved in [14].
10 Our exposition is deliberately brief. For a comprehensive accounts of the dynamic programming approach to optimal growth models, see [20,21].
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The connection between the value function in the dynamic programming approach and themodified golden rule may be
noted as follows.

Proposition 1 shows that

(x̂, p̂) = (1/(1 + ad), 1/(1 + ρξ)) (4)
is a modified golden rule of the economy (Ω, u, ρ). A standard argument can now be used to show that x̂ is a stationary
optimal stock of the economy (Ω, u, ρ); see, for example, [19, p. 1305]. Consequently, we have:

V (x̂) = x̂/(1 − ρ). (5)
It is easy to verify that:

V (x) − p̂x ≤ V (x̂) − p̂x̂ for all x ≥ 0. (6)
Choosing x = x̂ + ε in (6), and letting ε → 0, we obtain:

V ′

+
(x̂) ≤ p̂ ≤ V ′

−
(x̂). (7)

Using (7) and (MGR), we have:

V ′

+
(x̂) ≤ p̂ = 1/(1 + ρξ) < (a/ρ). (8)

2.4. Basic properties of the OPC

In this subsection, we describe basic properties of the optimal policy correspondence, with minimal restrictions on the
parameters of our model. These preliminary properties will help us to lay the groundwork for the results to follow. Toward
this end, we describe three regions of the state space:

A = [0, x̂], B = (x̂, k), C = [k, ∞) (9)
where k = x̂/(1 − d). In addition, we define a function, g : X → X , by:

g(x) =


(1 − d)x for x ∈ C
x̂ for x ∈ B
(1/a) − ξx for x ∈ A.

(10)

We refer to g as the ‘‘pan map’’, in view of the fact that its graph resembles a pan.
We further subdivide the region B into two regions as follows:

D = (x̂, 1), E = [1, k) (11)
and define a correspondence, G : X → X , by:

G(x) =


{(1 − d)x} for x ∈ C
[(1 − d)x, x̂] for x ∈ E
[(1/a) − ξx, x̂] for x ∈ D
{(1/a) − ξx} for x ∈ A.

(12)

The main result of this subsection can be summarized in the following proposition, and illustrated in Fig. 1.

Proposition 2. The optimal policy correspondence, h, satisfies:

h(x) ⊂


{g(x)} for all x ∈ A ∪ C
G(x) for all x ∈ B. (13)

3. Characterizing optimality

In order to conduct a bifurcation analysis of the optimal policy correspondence with respect to the discount factor, it is
clear that an explicit solution of the OPC (in terms of the parameters of the model) will be extremely useful. Providing an
explicit solution requires us to go beyond the description of the OPC given in Proposition 2; specifically, we need to describe
fully the nature of the OPC in the ‘‘middle region’’ of stocks.

This can be accomplished by systematically developing the implications of the functional equation of dynamic
programming. The ideas that we pursue in this direction are: (i) the nature of the value function at certain key points in
the middle region (specifically, at x̂, 1 and k) provides us with valuable information about the OPC in the middle region;
and (ii) the nature of the policy function outside the middle region (which we already know explicitly) provides us with
additional information about the value function in the middle region.

The outcome of the first part of this development is in the form of a set of useful sufficient and necessary conditions of
optimality, by using the Kuhn–Tucker method. The second part relates primarily to results on the slope and differentiability
of the value function. Together, they provide us with a convenient set of tools to pursue bifurcation analysis in the sections
that follow.
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3.1. Condition for optimality of the check map

We start with a convenient necessary and sufficient condition for optimality of the check map when the stock x is in the
middle region B. For this purpose, it is appropriate at this point to introduce the function H from X to X , defined by:

H(x) =


(1 − d)x for x ∈ C ∪ E
(1/a) − ξx for x ∈ A ∪ D.

(CM)

We refer to H as the ‘‘check map’’ following the terminology of [22], since its graph resembles the standard check mark.

Lemma 1. (I) Suppose x̄ ∈ B, and the following condition holds:

V ′

+
(H(x̄)) ≤ (a/ρ).

Then,

H(x̄) ∈ h(x̄).

Further, if V ′
+
(H(x̄)) < (a/ρ), then h(x̄) = {H(x̄)}.

(II) Suppose x̄ ∈ B, and the following condition holds:

H(x̄) ∈ h(x̄).

Then,

V ′

+
(H(x̄)) ≤ (a/ρ).

3.2. Condition for optimality of a flat bottom map

The check map has a kink at its bottom point, where the stock level is equal to 1. In contrast to that, we might consider
maps which have a flat bottom. This includes the panmap, of course, but we use the termmore generally even when the flat
bottom is narrower than in the pan map (where the bottom is the interval [x̂, k]).

We now provide a convenient sufficient condition for the optimality of a flat bottom map.

Lemma 2. Let m, n satisfy x̂ ≤ m < 1 < n ≤ k, such that H(m) = H(n) ≡ ẑ. If V ′
+
(ẑ) ≤ (a/ρ) and V ′

−
(ẑ) ≥ (a/ρ), then

ẑ ∈ h(x) for all x ∈ (m, n).

Note in particular (by setting m = x̂) that since V ′
+
(x̂) < (a/ρ) by (8), the pan map is optimal if V ′

−
(x̂) ≥ (a/ρ).

Consequently, if the pan map is not optimal, then we must have V ′
−
(x̂) < (a/ρ).

3.3. Slope of the value function

The two lemmas above provide criteria for optimality which are phrased in terms of the slope of the value function. In
order to apply them effectively, we need to combine them with knowledge about the slope of the value function at some
key points in the state space. Our first result in this direction provides an upper bound on the slope of the value function at
H(1).

Lemma 3. The value function, V , satisfies:

V ′

−
(H(1)) ≤ 1.

3.4. Differentiability of the value function

Our second result provides a condition under which the value function is differentiable at x̂ and at k.

Lemma 4. (a) If V ′
−
(x̂) < (a/ρ), then there is θ > 0, such that (i) for all x ∈ (k − θ, k), H(x) ∈ h(x); (ii) for all

x ∈ (x̂, x̂ + θ), H(x) ∈ h(x).
(b) If V ′

−
(x̂) < (a/ρ) and ρξ ≠ 1, then the value function is differentiable at x̂ and k, and:

(i) V ′(x̂) = p̂ = 1/(1 + ρξ); (ii) V ′(k) = ρ(1 − d)p̂ = ρ(1 − d)/(1 + ρξ).

4. Bifurcation analysis with respect to the discount factor

In this section, we begin our bifurcation analysis of the optimal policy correspondence with respect to the discount
factor. We start by recalling the result of [14], which shows that (1/ξ) is a bifurcation value for the discount factor, where
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ξ ≡ (1/a) − (1 − d) represents the rate of transformation between machines today and machines tomorrow, while
maintaining full-employment of both labor and capital. Specifically, we are able to provide an explicit solution of the optimal
policy correspondence as an optimal policy function, which we call the ‘‘pan map’’, for all discount factors ρ above the
discount factor, (1/ξ). Further, when the discount factor ρ falls below (1/ξ), we can show that the pan map is not optimal.

Theorem 1. (i) If ρξ > 1, the optimal policy correspondence, h, is an optimal policy function, and satisfies h(x) = {g(x)} for
all x ∈ X .

(ii) If ρξ < 1, then for every x ∈ (x̂, k), we have g(x) ∉ h(x).
(iii) If ρξ ≥ 1, the pan map g(x) is optimal; that is g(x) ∈ h(x) for all x ∈ X .

Part (i) of the theorem follows from part (i) of Theorem 1 on page 162 and remark (i) on page 167 in [14]. Part (ii) of the
theorem follows from part (ii) of Theorem 1 in [14]. Part (iii) follows from part (i) and the upper hemicontinuity of the OPC
with respect to the discount factor ρ.

Theorem 1(ii) does not specify the nature of the optimal policy correspondence when ρξ < 1. Commenting on this
aspect of the above result, [14] conjecture two possible scenarios. The first scenario is that for ρ < (1/ξ), the graph of the
optimal policy correspondence is the check map. The second scenario is more intricate. It might be the case that for some
values of the discount factor lower than (1/ξ), only a subset of the transitions (in the middle section), described by the
correspondence G, are optimal, and ‘‘there is a cascade of bifurcation values’’ of the discount factor before one reaches the
discount factor at which the check map is optimal. The remainder of this section is an exploration of this conjecture.

4.1. The first scenario

It turns out that, under a technological restriction (that is, a restriction on the parameters (a, d)), the first scenario does
indeed occur. We state the relevant result here, and we refer the reader to [13] for a proof.

Proposition 3. Suppose the RSS model (a, d, ρ) satisfies:

ξ(1 − d) ≤ 1 (14)

and:

ρ < (1/ξ). (15)

Then, its optimal policy correspondence, h, is the function given by the check map H.

Theorem 1, together with Proposition 3, indicate that when the technological restriction (14) holds, then there is a single
bifurcation value of the discount factor, namely (1/ξ).

4.2. Aspects of the second scenario

The second scenario has two aspects. First, there is the premise that when the discount factor is ‘‘well below’’ the
bifurcation value (1/ξ), the checkmap is always optimal. Second, there is the conjecture that for some discount factor below
the bifurcation value (1/ξ), the check map is not optimal.

We settle the first aspect definitively by showing that for all discount factors below the discount factor (1/ζ ), where
ζ = (1/a), the optimal policy correspondence is the check map.

Proposition 4. If ρ < (1/ζ ), then the optimal policy correspondence, h, is an optimal policy function, and satisfies h(x) =

{H(x)} for all x ∈ X .

Proof. Given Proposition 2, we only need to show that h(x) = {H(x)} for all x ∈ (x̂, k). By Lemma 3, we have V ′
+
(H(1)) ≤

V ′
−
(H(1)) ≤ 1. Since ρ < (1/ζ ) = a, we must have V ′

+
(H(1)) < (a/ρ). Since H(x) ≥ H(1) for all x ∈ (x̂, k), the concavity

of H yields:

V ′

+
(H(x)) < (a/ρ) for all x ∈ (x̂, k).

Now, the result follows from Lemma 1(I). �

The second aspect is considerably harder to establish. If there is some discount factor below the bifurcation value (1/ξ),
forwhich the checkmap is not optimal., it is plausible to suppose that there is a ‘‘smallest’’ discount factorwith this property.
In this case, this ‘‘smallest’’ discount factor would clearly be a second bifurcation value of the discount factor. And, unlike the
first bifurcation value of (1/ξ), the intuition for a second bifurcation value of the discount factor is not altogether clear. To
summarize, we do not have a precise target to aim at.

Our best lead in this direction is to recognize, having established Propositions 3 and 4, that under some technological
restriction, weaker than that employed in Proposition 3, it might be possible to show that the check map is optimal under
a weaker discount factor restriction than that employed in Proposition 4. That is, we trade off discount factor restriction
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for technological restriction to obtain a result which sits ‘‘in between’’ Propositions 3 and 4. Compared to Proposition 3, the
discount factor restrictionwould be stronger, but the technological restrictionwould beweaker. Compared to Proposition 4,
which has no separate technological restriction, the discount factor restriction would be weaker, but there would be a
technological restriction.

The technological restriction that we introduce at this point depends on the behavior of the second iterate of the stock
level x = 1, under the check map, H , and it leads to the following nomenclature. If H2(1) > k, we refer to the case as the
‘‘outside case’’, since the second iterate falls outside the region B. If H2(1) < k, we refer to it as the ‘‘inside case’’; the second
iterate falls inside the region B. If H2(1) = k, this forms the borderline between the previous two cases, and we refer to it
accordingly as the ‘‘borderline case’’.

In what follows we impose the technological restriction that:

H2(1) ≤ k. (16)

It can be verified (see [17]) that:

H2(1) ≤ k ⇐⇒

[
ξ −

1
ξ

]
(1 − d) ≤ 1. (17)

Thus, condition (14) implies H2(1) < k, and is stronger than it.
Under the restriction (16), we can establish the result that when the discount factor ρ is smaller than (1/η), where

η ≡
√

(ξ/a), the optimal policy correspondence is given by the check map, H . Note that since ξ = (1/a)− (1− d), we have
(i) ξ < (1/a), so that (a/ξ) > a2, and (1/η) > a = (1/ζ ); (ii) aξ < 1, so that (a/ξ) < (1/ξ 2), and (1/η) < (1/ξ).

Proposition 5. Suppose H2(1) ≤ k, and ρ < (1/η). Then h(x) = {H(x)} for all x ∈ X .

Proof. Let x = H(1) ≡ (1 − d) and z = H(x). Then z ∈ h(x) by Proposition 2, and u(x, z) = x, so that: and so, using the
knowledge of the policy function for low stocks, we can write

V (x) = u(x, z) + ρV (z) = (1 − d) + ρV (H2(1)). (18)

Pick 0 < ε < x̂ − (1 − d). Then, x′
≡ x + ε = (1 − d) + ε ∈ (0, x̂), and so z ′

≡ H(x′) ∈ h(x′) by Proposition 2, and
u(x′, z ′) = (1 − d) + ε. Thus,

V (x + ε) = u(x + ε, z ′) + ρV (z ′) = [(1 − d) + ε] + ρV (H2(1) − ξε). (19)

Using (18) and (19), we get:

V (x + ε) − V (x)
ε

= 1 − ρξ
[V (z) − V (z − ξε)]

ξε
.

On letting ε → 0, we obtain

V ′

+
(H(1)) = 1 − ρξV ′

−
(z) ≤ 1 − ρξV ′

−
(k) (20)

where the inequality in (20) follows from the facts that z = H2(1) ≤ k, and V is concave.
Since ρ < (1/η) < (1/ξ), Lemma 2 and Theorem 1(ii) imply that V ′

−
(x̂) < (a/ρ). Thus, Lemma 4 applies, and V is

differentiable at k, with V ′(k) = ρ(1− d)/(1+ρξ). Using this information and the hypothesis that V ′
+
(H(1)) ≥ (a/ρ), (20)

yields the inequality:

V ′

+
(H(1)) ≤ 1 − ρ2ξ(1 − d)/(1 + ρξ). (21)

We claim that V ′
+
(H(1)) < (a/ρ). For if the claim was not valid, (21) would yield:

a/ρ ≤ 1 − {ρ2ξ(1 − d)/(1 + ρξ)}.

This can be rewritten as:

ρ3ξ(1 − d) − ρ2ξ − ρ(1 − aξ) + a ≤ 0. (22)

Since (1 − aξ) = a(1 − d), (22) can also be written as:

(ρ2ξ − a)(ρ(1 − d) − 1) ≤ 0.

Since ρ ∈ (0, 1), we have (ρ(1 − d) − 1) < 0. Thus, we must have ρ2ξ ≥ a, or ρ ≥
√

(a/ξ) = (1/η). This contradiction
establishes our claim. Now, the result follows from Lemma 1(I). �
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4.3. The second bifurcation in the borderline case

While Proposition 5 does not confirm the conjecture about the second scenario, its proof deserves close inspection. In
honing in on the value (1/η) as an important benchmark for the discount factor, ρ, it is extremely tight in all steps, except for
(20), where V ′

−
(k) is used as a lower bound for V ′

−
(z), since z = H2(1) can be less than k. This suggests, that whenH2(1) = k,

the inequality in (20) would be superfluous, and the proof would indeed be tight in all steps. Thus, when H2(1) = k, we
expect that ρ > (1/η) would imply that V ′

+
(H(1)) > (a/ρ), so that the check map would not be optimal. We confirm this

expectation in our next result.

Theorem 2. Suppose H2(1) = k. Then,
(i) If ρη < 1, the optimal policy correspondence, h, is an optimal policy function, given by the check map, H.
(ii) If ρξ < 1 < ρη, then we have H(1) ∉ h(1), and so the check map is not optimal.
(iii) If ρξ = 1, the optimal policy correspondence, h, satisfies h(x) = G(x) for all x ∈ X .

Proof. Clearly, part (i) follows directly from Proposition 5. To establish part (ii), note that since ρ < (1/ξ), Lemma 2 and
Theorem 1(ii) imply that V ′

−
(x̂) < (a/ρ). Thus, Lemma 4 applies, and V is differentiable at k, with V ′(k) = ρ(1−d)/(1+ρξ).

Thus, we can follow the steps of the proof of Proposition 5 to obtain (instead of (20)),

V ′

+
(H(1)) = 1 − ρξV ′

−
(k) = 1 − {ρ2ξ(1 − d)/(1 + ρξ)}. (23)

We claim that V ′
+
(H(1)) > (a/ρ). For if the claim was not valid, (23) would yield:

a/ρ ≥ 1 − {ρ2ξ(1 − d)/(1 + ρξ)}.

This can be rewritten as:

ρ3ξ(1 − d) − ρ2ξ − ρ(1 − aξ) + a ≥ 0. (24)

Since (1 − aξ) = a(1 − d), (24) can also be written as:

(ρ2ξ − a)(ρ(1 − d) − 1) ≥ 0.

Since ρ ∈ (0, 1), we have (ρ(1 − d) − 1) < 0. Thus, we must have ρ2ξ ≤ a, or ρ ≤
√

(a/ξ) = (1/η). This contradiction
establishes our claim. Now, the result follows from Lemma 1(II).

To establish (iii), note first that by Theorem 1(iii), the pan map is optimal; that is g(x) ∈ h(x) for all x ∈ X . Then, for all
x ∈ (x̂, k], we have:

1 − {ax̂ − (1 − d)x} = [1 − a(1 − d)]x̂ + a(1 − d)x < x

so that u(x, x̂) = 1 − {ax̂ − (1 − d)x}, and:

V (x) = 1 − {ax̂ − (1 − d)x} + ρV (x̂).

Also,

V (x̂) = 1 − {ax̂ − (1 − d)x̂} + ρV (x̂).

Thus, we get for all x ∈ (x̂, k],

V (x) = a(1 − d)x + V (x̂) − a(1 − d)x̂

and this clearly implies:

V ′

−
(k) = a(1 − d). (25)

We can now follow the steps of the proof of Proposition 5 to obtain (instead of (20)),

V ′

+
(H(1)) = 1 − ρξV ′

−
(k) = 1 − a(1 − d) (26)

the second equality in (26) following from (25) and the fact that ρξ = 1. Thus, V ′
+
(H(1)) = aξ = (a/ρ), and by Lemma 1(I)

and the concavity of V , we have H(x) ∈ h(x) for all x ∈ (x̂, k), and therefore H(x) ∈ h(x) for all x ∈ X . We already know
that g(x) ∈ h(x) for all x ∈ X . Thus, using the convexity of Ω and concavity of u on Ω , it follows that h(x) = G(x) for all
x ∈ X . �

Theorem 2 provides an illustration of the following ‘‘reswitching phenomenon’’ in the borderline case, where H2(1) = k.
Consider the optimal action when the initial stock is x = 1. When ρ = (1/ξ), since the check map is optimal (by part (iii) of
the theorem), it is optimal to choose next period’s stock (call it z) to be z = H(1) = (1 − d). When ρ falls below (1/ξ) but
is above (1/η), then (by part (ii) of the theorem) it is not optimal to choose z = H(1) = (1 − d); that is, one must switch
to a different optimal action. When ρ falls even further so that it is below (1/η), then (by part (ii) of the theorem) it is again
optimal to choose z = H(1) = (1 − d); that is, one ‘‘reswitches’’ back to the original action.
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5. The nature of the OPC in the borderline case

Theorems 1 and 2 are definitive in describing the nature of the OPC for (1/ξ) < ρ < 1, and for 0 < ρ < (1/η)
respectively for the borderline case. In this final section, we describe the OPC for (1/ξ) > ρ > (1/η) in the borderline case
in more detail than is done in Theorem 2.

5.1. The optimality of a flat bottom map

Note that for the range of discount factors (1/ξ) > ρ > (1/η) in the borderline case, neither the check map nor the pan
map is optimal (by Theorem 1(ii) and Theorem 2(ii) respectively). We show in this case, using Lemma 2, that a flat bottom
map (with a narrower bottom than the pan map) is optimal.

Proposition 6. Suppose V ′
−
(x̂) < (a/ρ) and V ′

+
(1 − d) > (a/ρ). Then, there exist m, n satisfying x̂ < m < 1 < n < k, such

that:

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m] ∪ [n, k)

(ii) V ′

+
(H(x)) > (a/ρ) for all x ∈ (m, n)


and:

(i) H(m) = H(n) ∈ h(x) for all x ∈ [m, n]
(ii) H(x) ∈ h(x) for all x ∈ (x̂,m] ∪ [n, k)


.

Further, V is linear on [m, n], with V ′(x) = a(1 − d) for all x ∈ (m, n).

Proof. Since V is concave, there is ε > 0, such that for all x ∈ (k − ε, k], we have:

V ′

+
(H(x)) < (a/ρ).

Thus, using the concavity of V , there is some n ∈ (1, k) such that:

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ [n, k)

(ii) V ′

+
(H(x)) > (a/ρ) for all x ∈ [1, n)


. (27)

Clearly, there ism ∈ (x̂, 1) such that H(n) = H(m). So, using (27) and the definition of H , we also have:

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m]

(ii) V ′

+
(H(x)) > (a/ρ) for all x ∈ (m, 1)


. (28)

Using Lemma 2 and (27)(i) we get:

H(x) ∈ h(x) for all x ∈ [n, k).

Using Lemma 2 and (28)(i) we get:

H(x) ∈ h(x) for all x ∈ (x̂,m].

It follows from (27)(ii) that:

V ′

−
(H(n)) ≥ (a/ρ). (29)

Using (27)(i) and (29), Lemma 2 implies that:

H(m) = H(n) ∈ h(x) for all x ∈ [m, n] (30)

by using the upper hemicontinuity of the optimal policy correspondence.
For any x′

∈ (m, n), we can pick ε > 0, such that J = [x′
− ε, x′

+ ε] ⊂ (m, n), and for every x ∈ J , we have:

(i) ẑ > (1 − d)x
(ii) a[ẑ − (1 − d)x] < 1
(iii) 1 − a[ẑ − (1 − d)x] < x


. (31)

The verification of (31) follows exactly the steps used in the proof of Lemma 2. Then, denoting H(m) = H(n) by ẑ, and using
(30) and (31),

V (x′
+ ε) − V (x′) = u(x′

+ ε, ẑ) − u(x′, ẑ) = a(1 − d)ε.

Similarly,

V (x′) − V (x′
− ε) = u(x′, ẑ) − u(x′

− ε, ẑ) = a(1 − d)ε.
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Letting ε → 0, V ′
+
(x′) = V ′

−
(x′) = a(1 − d). Thus, we must have:

V ′(x) = a(1 − d) for all x ∈ (m, n) (32)

and since V is continuous, V must be linear on [m, n]. �

Theorem 3. Suppose H2(1) = k, and ρη > 1 > ρξ . Then, there exist m, n satisfying x̂ < m < 1 < n < k, such that:

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m] ∪ [n, k)

(ii) V ′

+
(H(x)) > (a/ρ) for all x ∈ (m, n)


(33)

and:

(i) H(m) = H(n) ∈ h(x) for all x ∈ [m, n]
(ii) H(x) ∈ h(x) for all x ∈ (x̂,m] ∪ [n, k)


.

Further, V is linear on [m, n], with V ′(x) = a(1 − d) for all x ∈ (m, n).

Proof. Since ρξ < 1, we have V ′
−
(x̂) < (a/ρ) by Lemma 2 and Theorem 1(ii). Since ρη > 1 > ρξ , we also have

V ′
+
(H(1)) > (a/ρ) by Theorem 2(ii) and Lemma 1(I). Then, the result follows directly from Proposition 6. �

It would complete our bifurcation analysis of the borderline case of H2(1) = k if we could identify the values of m and
n in Theorem 3 in terms of the parameters of the model (a, d, ρ). We have not been able to do that yet. However, we can
indicate a useful ‘‘upper bound’’ on the flat bottom of the map.

Note thatH2(1) = k > 1, andH2(k) = x̂ < k. Thus, there is a unique n̄ ∈ (1, k), such thatH2(n̄) = n̄. DenotingH(n̄) by ẑ,
we note that ẑ ∈ ((1− d), x̂). Since H(1) = (1− d) and H(x̂) = x̂, there is a unique m̄ ∈ (x̂, 1) such that H(m̄) = ẑ = H(n̄).

Proposition 7. Suppose H2(1) = k, and ρη > 1 > ρξ . Let m and n be values, satisfying x̂ < m < 1 < n < k, and the
properties mentioned in Theorem 3. Then, we must have [m, n] ⊂ [m̄, n̄].

Proof. Suppose this were not true. Then, using the definitions ofm, n, m̄, n̄, it must be the case that

x̂ < m < m̄ < 1 < n̄ < n < k.

Choose x ∈ (m, m̄) with x sufficiently close to m̄, so that H2(x) ∈ (1, n). Since we have

H2(m̄) = H2(n̄) = n̄ ∈ (1, n),

this can be done. Denote H(x) by s; then s ∈ ((1 − d), x̂). Choosing ε > 0, such that s + ε ∈ ((1 − d), x̂), we have

V (s) = s + ρV ((1/a) − ξ s) and V (s + ε) = s + ε + ρV ((1/a) − ξ(s + ε)).

This yields

V (s + ε) − V (s)
ε

= 1 − ρξ
V ((1/a) − ξ s) − V ((1/a) − ξ(s + ε))

ξε
.

On letting ε → 0, we obtain

V ′

+
(s) = 1 − ρξV ′((1/a) − ξ s) = 1 − ρξV ′(H2(x))

= 1 − ρξa(1 − d) = 1 − ρξ(1 − aξ), (34)

the third equality following from Theorem 3, and the fact that H2(x) ∈ (1, n). By (33)(ii), we obtain V ′
+
(s) = V ′

+
(H(x)) >

(a/ρ). Using this in (34) yields (a/ρ) < 1 − ρξ(1 − aξ). This inequality can be rewritten as:

ρ2ξ(1 − aξ) − ρ + a < 0

which yields:

a(ρξ − 1)(ρ(1 − d) − 1) < 0.

Since ρ(1 − d) − 1 < 0, we must have ρξ > 1, a contradiction that establishes the result. �

Remark. Since m̄ and n̄ are defined independent of ρ, Proposition 7 indicates that for all (1/ξ) > ρ > (1/η), the bottom
of the optimal policy has to ‘‘stay away’’ uniformly from the pan map, even when ρ approaches (1/ξ). This, of course, is
completely consistent with the upper hemicontinuity of the optimal policy correspondence with respect to the parameters
of themodel, since the checkmap and the panmap and everything in between are optimalwhen ρξ = 1 (by Theorem2(iii)).
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5.2. The OPC for the second bifurcation value

Theorems 1–3 provide us with information about the OPC in the borderline case for all values of the discount factor
except for the second bifurcation value (1/η). We now show that when ρ = (1/η), the OPC is given by the check map.

Proposition 8. Let H2(1) = k. For ρ ∈ (0, 1), satisfying ρη = 1, the check map is uniquely optimal.

Proof. We know that for all ρ ∈ (0, 1), satisfying ρη < 1, the check map is uniquely optimal. Consequently, by the
upper hemicontinuity of the optimal policy correspondence with respect to the parameter ρ, we know that the check
map is optimal when ρ = (1/η). That is, the check map belongs to the optimal policy correspondence for ρ = (1/η).
By Lemma 1(II), we must then have V ′

+
(H(1)) ≤ (a/ρ).

If V ′
+
(H(1)) < (a/ρ), then we have V ′

+
(H(x)) < (a/ρ) for all x ∈ (x̂, k). Thus, in this case, by Lemma 1(I), h(x) = {H(x)}

for every x ∈ (x̂, k). Thus, we are left with the case in which V ′
+
(H(1)) = (a/ρ). We claim, in this case, that h(x) = {H(x)}

for all x ∈ (x̂, k). Suppose the claim is not true. We discuss the implications in three steps.
Step 1. Since the claim is not true, there is some x̃ ∈ (x̂, k), and ẑ ∈ (H(x̃), x̂), such that ẑ ∈ h(x̃). Then, since z̃ ≡ H(x̃) ∈ h(x̃)
as well, we have:

V (x̃) = u(x̃, z̃) + ρV (z̃)
V (x̃) = u(x̃, ẑ) + ρV (ẑ)


. (35)

Clearly, u(x̃, ẑ) = u(x̃, z̃) − a(ẑ − z̃), so that (35) yields ρ[V (ẑ) − V (z̃)] = [u(x̃, z̃) − u(x̃, ẑ)] = a(ẑ − z̃), and:

[V (ẑ) − V (z̃)]/(ẑ − z̃) = (a/ρ).

This implies that V ′
−
(ẑ) ≥ (a/ρ). But since V ′

+
(H(1)) = (a/ρ), and ẑ > H(x̃) ≥ H(1), we must also have V ′

−
(ẑ) ≤ (a/ρ),

and so V ′
−
(ẑ) = (a/ρ). That is, V must be linear on [H(1), ẑ], with slope (a/ρ).

Define n ∈ (1, k), such that H(n) = ẑ. Then, we have

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ [n, k)

(ii) V ′

+
(H(x)) = (a/ρ) for all x ∈ [1, n)


. (36)

Clearly, there ism ∈ (x̂, 1) such that H(n) = H(m). So, using (36) and the definition of H , we also have

(i) V ′

+
(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m]

(ii) V ′

+
(H(x)) = (a/ρ) for all x ∈ (m, 1)


. (37)

Using H(n) = ẑ, and (36)(i), we have:

V ′

−
(ẑ) = (a/ρ), and V ′

+
(ẑ) ≤ (a/ρ)

so that Lemma 2 implies:

ẑ = H(m) = H(n) ∈ h(x) for all x ∈ [m, n] (38)

by using the upper hemicontinuity of the optimal policy correspondence. Now, following exactly the proof in Proposition 6,
we must have:

V ′(x) = a(1 − d) for all x ∈ (m, n), (39)

and since V is continuous, V must be linear on [m, n], with slope a(1 − d).
Step 2. Define f : [0, 1] → [(1 − d), (1/a)] by f (x) = (1/a) − ξx. This function has an inverse. Denoting the inverse by F ,
we have F : [(1 − d), (1/a)] → [0, 1] defined by F(y) = (1/aξ) − (y/ξ). Now, define, for T even,

y(0) = 1, y(r + 1) = F(y(r)) for r = 0, 1, . . . , T
y(T + 2) = y(T + 1)/(1 − d), y(T + 3) = F(y(T + 2)). (40)

It is easy to check that the first line of (40) is well defined, with y(1), y(3), . . . , y(T + 1) belonging to ((1 − d), x̂), and
y(2), y(4), . . . , y(T ) belonging to (x̂, 1). Clearly, then, y(T + 2) is well defined, with y(T + 2) belonging to (1, k). Since
f (1 − d) = H2(1) = k by assumption (in the borderline case), and f (x̂) = x̂ < 1 < y(T + 2), y(T + 3) is well defined and
belongs to ((1 − d), x̂).

Notice that the sequence is well defined for every finite T , T even. The important feature of the sequence is that, since
ξ > 1, y(T +1) → x̂ as T → ∞, and so y(T +2) → k as T → ∞, and y(T +3) → (1−d) = H(1) as T → ∞. Consequently,
we can choose T large enough, T even, such that (1 − d) < y(T + 3) < ẑ = H(m) = H(n).
Step 3. We now run the sequence y(r) in reverse as follows. Define

x(0) = y(T + 3), x(1) = y(T + 2), . . . , x(T + 3) = y(0) = 1. (41)
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Notice that by (40) and (41), we have x(t + 1) = H(x(t)) for t = 0, 1, . . . , T + 2. Furthermore, by the properties checked
for the sequence {y(r)} following (40), we have x(0) ∈ ((1 − d), x̂), x(1) ∈ (1, k). Further, x(2), x(4), . . . , x(T + 2) belong
to ((1 − d), x̂) and x(3), x(5), . . . , x(T + 1) belong to (x̂, 1). By choosing ε > 0 small enough and defining:

x′(0) = x(0) + ε, x′(t + 1) = H(x′(t)) for t = 0, 1, . . . , T + 2 (42)

we can ensure that x′(0) ∈ ((1 − d), x̂), x′(1) ∈ (1, k). Further, x′(2), x′(4), . . . , x′(T + 2) belong to ((1 − d), x̂) and
x′(3), x′(5), . . . , x′(T + 1) belong to (x̂, 1). Further, x′(T + 3) > x(T + 3) = 1.

Since the check map is optimal, we must have, for all t ∈ {0, 1, . . . , T + 2},

V (x(t)) = u(x(t), x(t + 1)) + ρV (x(t + 1))
V (x′(t)) = u(x′(t), x′(t + 1)) + ρV (x′(t + 1))


. (43)

Using (41)–(43), we can write

V (x(0) + ε) − V (x(0)) = ε + ρ(1 − 1) − ρ2(1 − d)ξε + ρ3(1 − d)ξ 2ε − ρ4(1 − d)ξ 3ε

+ · · · − ρT+2(1 − d)ξ T+1ε + ρT+3
[V (1 + (1 − d)ξ T+2ε) − V (1)]. (44)

This yields

V (x(0) + ε) − V (x(0))
ε

= 1 − ρ2(1 − d)ξ + ρ3(1 − d)ξ 2
− ρ4(1 − d)ξ 3

+ · · · − ρT+2(1 − d)ξ T+1

+ ρT+3(1 − d)ξ T+2 [V (1 + (1 − d)ξ T+2ε) − V (1)]
(1 − d)ξ T+2ε

. (45)

Thus, letting ε → 0 in (45), we get:

V ′

+
(x(0)) = 1 − ρ2(1 − d)ξ + ρ3(1 − d)ξ 2

− ρ4(1 − d)ξ 3
+ · · · − ρT+2(1 − d)ξ T+1

+ ρT+3(1 − d)ξ T+2V ′

+
(1). (46)

To simplify (39), define ρξ = α, and S = −α2
+ α3

− α4
+ · · · − αT+2. Then, we obtain

S = −
(α2

+ αT+3)

(1 + α)
. (47)

Using (39) and (47) in (46), we can write

V ′

+
(x(0)) = 1 −

(1 − d)
ξ

(α2
+ αT+3)

(1 + α)
+ ρT+3(1 − d)ξ T+2a(1 − d)

= 1 −
(1 − d)

ξ

α2

(1 + α)
+ ρT+3(1 − d)ξ T+2


a(1 − d) −

1
(1 + α)


= 1 −

(1 − d)ρ2ξ

(1 + ρξ)
+ ρT+3(1 − d)ξ T+2


a(1 − d) −

1
(1 + ρξ)


= (a/ρ) + ρT+3(1 − d)ξ T+2


a(1 − d) −

1
(1 + ρξ)


(48)

the last line of (48) following from the fact that ρ = (1/η) =
√
a/ξ .

By (36)(ii) and (37)(ii), we have V ′
+
(x(0)) = V ′

+
(y(T + 3)) = (a/ρ), since y(T + 3) ∈ ((1 − d), ẑ). Thus, (48) can be true

only if a(1 − d) = [1/(1 + ρξ)]. But, noting that a(1 − d) = 1 − aξ, we then get (1 − aξ)(1 + ρξ) = 1, which yields
after simplification ρ(1 − d) = 1, a contradiction. This establishes our claim that h(x) = {H(x)} for all x ∈ (x̂, k), and hence
completes the proof. �

5.3. The asymptotic result

We now look at how the OPC changes as ρ changes, with (a, d) fixed so that H2(1) = k. So, we now need to be careful to
recognize that the value function V and the OPC h will, in general, depend on ρ. So, we will use Vρ and hρ to alert us about
this dependence.

Let us rewrite Theorem 3 in this new notation. Suppose H2(1) = k, and ρ ∈ (0, 1) satisfies ρη > 1 > ρξ . Then, there
exist m(ρ), n(ρ) satisfying x̂ < m(ρ) < 1 < n(ρ) < k, such that

(i) H(m(ρ)) = H(n(ρ)) ∈ hρ(x) for all x ∈ [m(ρ), n(ρ)]
(ii) H(x) ∈ hρ(x) for all x ∈ (x̂,m(ρ)] ∪ [n(ρ), k)


. (49)
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Further, Vρ is linear on [m(ρ), n(ρ)], with the following properties:

V ′

ρ(x) = a(1 − d) for all x ∈ (m(ρ), n(ρ)),

(i) V ′

+ρ(H(x)) ≤ (a/ρ) for all x ∈ (x̂,m(ρ)] ∪ [n(ρ), k)
(ii) V ′

+ρ(H(x)) > (a/ρ) for all x ∈ (m(ρ), n(ρ))


. (50)

The important restriction to be noted from (49) is that, for all x ∈ (x̂, k),

z ∈ hρ(x) implies z ≥ H(m(ρ)) = H(n(ρ)) > (1 − d).

We now establish the asymptotic result that the OPC, hρ , for (1/ξ) > ρ > (1/η), converges to the check map as
ρ → (1/η).

Proposition 9. Suppose H2(1) = k. For ρ ∈ (0, 1) satisfying ρη > 1 > ρξ , we have, for each x ∈ (x̂, k),

z(ρ) ∈ hρ(x) implies z(ρ) → H(x) as ρ → (1/η). (51)

Proof. Suppose (51) does not hold for some x ∈ (x̂, k). We fix this x in what follows. Since z(ρ) ∈ [x̂, k], there must then be
a subsequence of ρ (call it ρs) converging to (1/η), for which z(ρs) is convergent, and further the limit of z(ρs) is z > H(x).
Since z(ρs) ∈ hρ(x) for all s, the upper hemicontinuity of hρ with respect to ρ implies that z ∈ h(1/η)(x). But, since z > H(x),
this contradicts the result proved in Proposition 8. Thus, (51) must hold. �

Appendix

The appendix provides the proofs of Lemmas 1–4, presented in Section 3.

Proof of Lemma 1. (I) Let us define the production correspondence from R+ to subsets of R+ by:

F(x) = {z : (x, z) ∈ Ω}.

Clearly, for each x ∈ R+, the set F(x) is the interval given by:

F(x) = [(1 − d)x, (1/a) + (1 − d)x].

We consider two cases separately: (i) x̄ ∈ E = [1, k); (ii) x̄ ∈ D = (x̂, 1). Consider case (i) first. Denote H(x̄) by z̄, and
{1 − a[H(x̄) − (1 − d)x̄]} by ȳ. Note that since x̄ ∈ E, we have ȳ = 1 ≤ x̄, and:

u(x̄, z̄) = min{ȳ, x̄} = ȳ = 1.

For z ∈ F(x̄), by feasibility, we have z ≥ H(x̄), and:

u(x̄, z) ≤ 1 − a[z − (1 − d)x̄] = u(x̄, z̄) − a(z − z̄).

For z ∈ F(x̄), define the function:

W (z) = u(x̄, z) + ρV (z).

Then, by concavity of V , we know thatW is concave on F(x̄). So,

W (z) − W (z̄) = [u(x̄, z) − u(x̄, z̄)] + ρ[V (z) − V (z̄)]
≤ −a(z − z̄) + ρ[V (z) − V (z̄)]
≤ [−a + ρV ′

+
(z̄)](z − z̄)

≤ 0.

Thus, we have:

V (x̄) = max
(x̄,z)∈Ω

[u(x̄, z) + ρV (z)] = u(x̄, z̄) + ρV (z̄).

This means, by the principle of optimality, that z̄ ∈ h(x̄).
Next, consider case (ii). Denote H(x̄) by z̄, and {1 − a[H(x̄) − (1 − d)x̄]} by ȳ. Note that since x̄ ∈ D, we have:

ȳ = 1 − a[(1/a) − ξ x̄ − (1 − d)x̄]
= a[(1 − d)x̄ + (1/a)x̄ − (1 − d)x̄] = x̄

and so:

u(x̄, z̄) = min{ȳ, x̄} = x̄.
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For z ∈ F(x̄), by feasibility, we have:

u(x̄, z) = min{1 − a[z − (1 − d)x̄], x̄}. (A.1)

For z ∈ F(x̄), define the function:

W (z) = u(x̄, z) + ρV (z).

Now, if z ∈ h(x̄), then z ≥ H(x̄), and:

1 − a[z − (1 − d)x̄] ≤ 1 − a[(1/a) − ξ x̄ − (1 − d)x̄]
= a[(1 − d)x̄ + (1/a)x̄ − (1 − d)x̄] = x̄

and so by (A.1), we have:

u(x̄, z) = 1 − a[z − (1 − d)x̄] = u(x̄, z̄) − a(z − z̄).

Then, by concavity ofW on F(x̄), we get:

W (z) − W (z̄) = [u(x̄, z) − u(x̄, z̄)] + ρ[V (z) − V (z̄)]
= −a(z − z̄) + ρ[V (z) − V (z̄)]
≤ [−a + ρV ′

+
(z̄)](z − z̄)

≤ 0.

Thus, we have:

V (x̄) = max
(x̄,z)∈Ω

[u(x̄, z) + ρV (z)] = [u(x̄, z) + ρV (z) : z ∈ h(x̄)]

≤ u(x̄, z̄) + ρV (z̄) ≤ V (x̄).

This means that the above inequalities must in fact hold as equalities, so that z̄ ∈ h(x̄).
If V ′

+
(H(x̄)) < (a/ρ), and z ∈ h(x̄), then strict inequality would hold in (A.1) and (A.3), if z > z̄ = H(x̄), leading to

W (z) < W (z̄), a contradiction to the definition of h. Thus, in this case, h(x̄) = {H(x̄)}.

(II) Define I = {ε : 0 ≤ ε ≤ (min{x, 1}/a)}, z̄ = H(x̄), z = z̄ + ε, and y = min{x, 1} − aε for ε ∈ I . Then z ≥ z̄ ≥ (1 − d)x̄,
and y + a[z − (1 − d)x] = min{x, 1} + a[z̄ − (1 − d)x] = 1. Also, 0 ≤ y ≤ x. Thus, (x, y) ∈ Ω and:

u(x, z) = y = min{x, 1} − aε
V (z) = V (z̄ + ε)


.

Since z̄ ∈ h(x̄), [u(x, z) + ρV (z)] = [min{x, 1} − aε] + ρV (z̄ + ε) must be maximized at ε = 0 among all ε ∈ I . The
first-order condition for this is:

−a + ρV ′

+
(z̄) ≤ 0

which establishes the result. �

Proof of Lemma 2. Let x ∈ (m, n). We can then verify that:

(i) ẑ > (1 − d)x
(ii) a[ẑ − (1 − d)x] < 1
(iii) 1 − a[ẑ − (1 − d)x] < x


. (A.2)

To verify (A.2)(i), note that ẑ = H(n) = (1 − d)n > (1 − d)x. To verify (A.2)(ii), note that:

a[ẑ − (1 − d)x] < aẑ = a(1 − d)n ≤ a(1 − d)k = ax̂ < 1.

Finally, to verify (A.2)(iii), we consider two cases: (a) x ≥ 1, (b) x < 1. In (a), we have:

1 − a[ẑ − (1 − d)x] < 1 ≤ x.

In (b), we note thatm < x < 1, and consequently:

ẑ = H(m) > H(x) = (1/a) − ξx
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so that:

aẑ > 1 − aξx = 1 − a[(1/a) − (1 − d)]x = 1 − x + a(1 − d)x.

Transposing terms yields the result.
Given (A.2), we can find ε > 0 such that for all z ∈ I ≡ (ẑ − ε, ẑ + ε), we have:

(i) z > (1 − d)x
(ii) a[z − (1 − d)x] < 1
(iii) 1 − a[z − (1 − d)x] < x


. (A.3)

Define φ(x) = {z : (x, z) ∈ Ω}, and for z ∈ φ(x), define:

W (z) = u(x, z) + ρV (z).

Clearly, φ(x) is a convex set, containing I , andW is concave on its domain.
For z ∈ I , using (A.3), we have u(x, z) = 1 − a[z − (1 − d)x], and so:

W (z) = 1 − a[z − (1 − d)x] + ρV (z).

Since ẑ ∈ I , we get:

W ′

+
(ẑ) = −a + ρV ′

+
(ẑ) ≤ 0 (A.4)

using V ′
+
(ẑ) ≤ (a/ρ). Similarly,

W ′

−
(ẑ) = −a + ρV ′

−
(ẑ) ≥ 0 (A.5)

using V ′
−
(ẑ) ≥ (a/ρ).

Now, for all z ∈ φ(x), with z > ẑ, we have:

W (z) − W (ẑ) ≤ W ′

+
(ẑ)(z − ẑ) ≤ 0

by using the concavity ofW on its domain, and (A.4). Similarly, for all z ∈ φ(x), with z < ẑ, we have:

W (z) − W (ẑ) ≤ W ′

−
(ẑ)(z − ẑ) ≤ 0

by using the concavity ofW on its domain, and (A.5). Thus, W is maximized at ẑ among all points in φ(x). That is,

max
(x,z)∈Ω

[u(x, z) + ρV (z)] = u(x, ẑ) + ρV (ẑ). (A.6)

Since the left-hand side expression in (A.9) is V (x) by the optimality principle, we have:

V (x) = u(x, ẑ) + ρV (ẑ).

This means that ẑ ∈ h(x), as claimed in the lemma. �

Proof of Lemma 3. Let x = H(1) ≡ (1−d). Define x′
= x−ε, where 0 < ε < x. Note that z ≡ h(x) = H(x) and u(x, z) = x.

Then z ≥ (1 − d)x ≥ (1 − d)x′, and:

a[z − (1 − d)x′
] = a[z − (1 − d)x] + a(1 − d)ε = 1 − x + a(1 − d)ε < 1 (A.7)

so that (x′, z) ∈ Ω . Denote ỹ = u(x, z) − ε = x − ε. Then, we have ỹ > 0, and using (A.7):

ỹ + a[z − (1 − d)x′
] = ỹ + (1 − x) + a(1 − d)ε = 1 − ε[1 − a(1 − d)] < 1

so that ỹ ∈ Λ(x′, z). Thus, we have:

V (x) = x + ρV (z)
V (x′) ≥ ỹ + ρV (z) = (x − ε) + ρV (z)


. (A.8)

Clearly, (A.8) implies:

V (x) − V (x − ε) ≤ ε

and this yields the desired bound on the left-hand derivative of the value function at x = H(1). �

Proof of Lemma 4. We prove (a) as follows. Since V ′
−
(x̂) < (a/ρ), there is θ ′ > 0 such that for all z ∈ (x̂ − θ ′, x̂),

V ′
+
(z) < (a/ρ). Thus, there is θ > 0, such that for all x ∈ (x̂, x̂ + θ) and for all x ∈ (k − θ, k), we have V ′

+
(H(x)) < (a/ρ).

Now, the result follows from Lemma 1.
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We prove (b) as follows. Choose 0 < ε such that ξ 2ε < θ , where θ is given by (a). Then, we have by (a),

V (x̂ + ε) = (x̂ + ε) + ρV (x̂ − ξε) and V (x̂) = x̂ + ρV (x̂).

This yields

V (x̂ + ε) − V (x̂)
ε

= 1 − ρξ
V (x̂) − V (x̂ − ξε)

ξε
.

On letting ε → 0, we obtain

V ′

+
(x̂) = 1 − ρξV ′

−
(x̂). (A.9)

By (a), we also have

V (x̂ + ε) = (x̂ + ε) + ρ(x̂ − ξε) + ρ2V (x̂ + ξ 2ε) and V (x̂) = x̂ + ρx̂ + ρ2V (x̂).

This yields

V (x̂ + ε) − V (x̂)
ε

= 1 − ρξ + ρ2ξ 2 V (x̂ + ξ 2ε) − V (x̂)
ξ 2ε

.

On letting ε → 0, we obtain

V ′

+
(x̂) = 1 − ρξ + ρ2ξ 2V ′

+
(x̂).

Since ρξ ≠ 1, this implies that V ′
+
(x̂) = 1/(1 + ρξ) = p̂, and using this information in (A.9), we also have V ′

−
(x̂) =

1/(1 + ρξ) = p̂.
Choose 0 < ε < min{(k − 1), θ} where θ is given by (a). Then (k − ε) > 1, and we know that H(k − ε) ∈ h(k − ε) by

(a). Thus, we can write

V (k) = 1 + ρV (x̂) and V (k − ε) = 1 + ρV (x̂ − ε(1 − d)),

which yields

V (k) − V (k − ε)

ε
= ρ(1 − d)

[
V (x̂) − V (x̂ − ε(1 − d))

ε(1 − d)

]
.

On letting ε → 0, we obtain

V ′

−
(k) = ρ(1 − d)V ′

−
(x̂) = ρ(1 − d)p̂.

For ε > 0, we also have H(k + ε) ∈ h(k + ε). So, we can write:

V (k) = 1 + ρV (x̂) and V (k + ε) = 1 + ρV (x̂ + ε(1 − d)),

which yields

V (k + ε) − V (k)
ε

= ρ(1 − d)
[
V (x̂ + ε(1 − d)) − V (x̂)

ε(1 − d)

]
.

On letting ε → 0, we obtain

V ′

+
(k) = ρ(1 − d)V ′

+
(x̂) = ρ(1 − d)p̂. �
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